Table CT1. Energy Consumption Estimates for Major Energy Sources in Physical Units, Selected Years, 1960-2013, Kansas | | | | | | | Petroleum | | | | | | | |----------------------|--|-----------------------------|--|---|--------------------------------------|--|----------------------|--------------------|--|---------------------------|--|------------------------------| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ° | Motor
Gasoline ^d | Residual
Fuel Oil | Other ^e | Total | Nuclear
Electric Power | Hydro-
electric
Power ^f | Fuel
Ethanol ⁹ | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | | Thousand Barrels | | | | Million Kilo | watthours | Thousand Barrels | | 1960 | 675 | 361 | 4,739 | 952 | 5,590 | 23,712 | 2,403 | 9,602 | 46,998 | 0 | 20 | NA | | 1965
1970 | 644
458 | 443 | 5,257
7,550
8,385 | 1,053
1,561 | 6,521
8,009 | 25,525
28,849 | 1,066 | 12,322 | 51,744 | 0 | 13 | NA | | 1970 | 458 | 576 | 7,550 | 1,561 | 8,009 | 28,849 | 1,127 | 10,093 | 57,189 | 0 | 7 | NA | | 1971 | 459 | 607 | 8,385 | 1,525
1,452
1,399 | 7,769 | 29,136
31,075
31,273 | 811 | 10,038 | 57,665 | 0 | 7 | NA | | 1972
1973 | 531 | 628 | 9,010
10,303 | 1,452 | 8,293
8,472 | 31,075 | 2,256
2,541 | 10,445
11,931 | 62,531 | 0 | 5 | NA | | 1973 | 1,185 | 604 | 10,303 | 1,399 | 8,472 | 31,273 | 2,541 | 11,931 | 65,919 | 0 | 3 | NA | | 1974 | 1,952 | 587 | 10,778 | 1,404 | 8,439 | 31.000 | 2,791 | 11,733 | 66,144 | 0 | 7 | NA | | 1975 | 3,117 | 499 | 11,273
12,071 | 1,310 | 8,857 | 32,004 | 6,365
6,220 | 11,479 | 71,288 | 0 | 5 | NA | | 1976 | 3,597 | 515 | 12,071 | 1,239 | 9,952 | 33,850 | 6,220 | 11,721 | 75,052 | 0 | 5 | NA | | 1977 | 4,682 | 507 | 12,456 | 1,426 | 10,087 | 33,273 | 6,282 | 12,652 | 76,175 | 0 | 3 | NA | | 1978
1979
1980 | 4,682
7,469
7,878
10,370
11,684 | 519 | 14,250
19,555
14,764
13,414 | 1,506 | 9,046 | 33,496
31,885
29,584
29,272 | 6,771 | 13,062 | 78,131
81,298
69,413
62,688 | 0 | 5 | NA | | 19/9 | 7,878 | 584
488 | 19,555 | 1,922
2,466
2,442 | 9,862 | 31,885 | 4,718 | 13,355
12,696 | 81,298 | 0 | 4 | NA | | 1980 | 10,370 | 488 | 14,/64 | 2,466 | 8,404
7,438 | 29,584 | 1,498 | 12,696 | 69,413 | 0 | 8 | NA
39 | | 1981 | 11,684 | 428 | 13,414 | 2,442 | 7,438 | 29,272 | 1,037 | 9,086 | 62,688 | 0 | 8 | 39 | | 1982 | 11,895 | 401 | 13,814 | 1,834 | 11,948 | 28,588 | 1,028 | 7,717 | 64,927 | 0 | / | 18 | | 1983
1984 | 13,103 | 346 | 14,009 | 1,492 | 12,021
26,692 | 28,603
28,499
28,209
28,453
29,123 | 1,956 | 8,157 | 66,237 | 0 | <u>6</u> | 157 | | 1984 | 15,565
14,715
14,359
15,194 | 364 | 14,764 | 3,338 | 26,692 | 28,499 | 1,154 | 8,820 | 83,266 | 0 | / | 612
529
505 | | 1985
1986
1987 | 14,/15 | 355
313
328 | 14,902
14,229
17,068 | 4,424
7,038
4,285 | 24,510 | 28,209 | 86
487
353 | 7,578 | 79,710 | 3,856 | 9 | 529 | | 1986 | 14,359 | 313 | 14,229 | 7,038 | 16,615 | 28,453 | 487 | 9,182
9,687 | 76,003
76,628 | 6,959 | 8 | 505 | | 1987 | 15,194 | 328 | 17,068 | 4,285 | 16,113 | 29,123 | 353 | 9,687 | 76,628 | 6,471 | 9 | 341
294 | | 1988 | 14,951 | 353 | 16,751 | 4,176 | 19,029 | 30,819 | 811 | 12,484 | 84,070 | 6,650 | 12 | 294 | | 1989 | 14,963 | 341 | 16,095 | 3,833 | 18,889 | 29,852 | 367 | 11,408 | 80,445 | 9,709 | 10 | 286 | | 1990 | 15,175 | 353 | 16,697 | 3,701
3,296 | 15,565
13,293 | 28,626
28,041
27,821
28,480
29,073
29,402 | 229
128 | 12,171
10,045 | 76,989
70,426
74,528
66,316
64,917
65,162 | 7,874
5,859 | 13
11 | 175 | | 1991 | 14,881
14,227
17,386
17,158 | 371 | 15,624 | 3,296 | 13,293 | 28,041 | 128 | 10,045 | 70,426 | 5,859 | 11 | 170 | | 1992 | 14,227 | 343 | 14,895 | 4,164 | 16,816 | 27,821 | 178 | 10,654 | 74,528 | 8,491 | 10 | 167 | | 1992
1993
1994 | 17,386 | 392 | 14,895
16,016
14,687 | 4,164
3,617
1,981
2,414
2,009 | 8,269
7,754 | 28,480 | 369 | 9,565
11,235 | 66,316 | 7,900
8,529
10,062 | 5
10 | 145
137 | | 1994 | 17,158 | 416 | 14,687
18,223 | 1,981 | 7,754 | 29,073 | 187
31 | 11,235 | 64,917 | 8,529 | | 13/ | | 1995 | 16,521
19,084 | 367 | 18,223 | 2,414 | 4,924
10,442 | 29,402 | 31 | 10,169 | 65,162 | 10,062 | 11 | 110 | | 1996 | 19,084 | 362 | 16,570 | 2,009 | 10,442 | 30,927 | 289 | 10,310 | 70,548 | 8,205 | 11 | 68 | | 1997 | 17,673 | 338
327 | 16,375 | 2,131
2,159 | 14,557 | 30,695 | 257
269 | 8,941
8,789 | 72,955 | 8,430 | 14 | 68
84 | | 1998 | 17,736 | 303 | 15,930
15,660 | 2,159 | 14,121 | 32,001 | 209 | 8,789 | 73,270 | 10,411 | 11 | 140 | | 1999
2000
2001 | 19,003
20,845
20,316
22,838
22,738 | 303 | 10,000 | 3,476
3,234
2,259
2,135 | 21,741
17,401
11,122
10,659 | 33,550
31,894
30,297
28,571 | 570
937
1,301 | 9,064
8,446 | 84,060
76,762
71,680
69,105 | 9,157
9,061 | 12
15 | 140
62
58
705 | | 2000 | 20,845 | 312
273
305 | 14,849
15,550
16,359 | 3,234 | 17,401 | 31,894 | 937 | 8,440 | 70,702 | 9,001 | 26 | 02 | | 2001 | 20,310 | 2/3 | 10,000 | 2,259 | 11,122 | 30,297 | 1,301 | 11,152
10,389 | 71,080 | 10,347
9,042 | 20 | 38
705 | | 2002
2003 | 22,030 | 281 | 17,100 | 2,135
3,228 | 16,944 | 32,721 | 991
2,160 | 9,969 | 82,121 | 8,890 | 13
12 | 999 | | 2003 | 22,730 | 257 | 17,100 | 3,220 | 14,808 | 32,721 | 2,184 | 10,269 | 79,336 | 10,133 | 13 | 100 | | 2004
2005 | 22,341
22,251 | 257 | 17,100 | 3,104
1,758 | 2,768 | 31,815
28,162 | 2,184
2,055 | 9,620 | 79,330 | 8,821 | 11 | 747 | | 2005 | 22,251 | 200 | 10,147 | 1,758 | 2,768
1,875 | 28,102 | 2,055
619 | 9,620 | 62,510
64,452 | 9,350 | 10 | 747
753 | | 2000 | 21,110 | 255
264
287 | 17,155
18,147
18,969
19,391
20,104 | 1,/52 | 1,8/5 | 31,603
31,979
31,204 | 019 | 9,633
9,506 | 80,474 | 9,300 | 10 | 753
1,448 | | 2007
2008 | 23,020
21,779 | 287 | 19,391 | 1,543
1,735 | 17,592
15,110 | 31,9/9 | 464
1,220 | 9,506
8,502 | 80,474
77,875 | 10,369 | 11 | 1,448 | | 2008 | 21,779 | ∠83
207 | 20,104 | 1,/35 | 10,110 | 31,204 | 1,220 | ö,502 | 77,075 | 8,497 | 11
13
13 | 2,628 | | 2009
2010 | 20,888
21,076 | 287
275 | 19,471
19,146 | 2,447
3,034 | 16,277
17,717 | 31,768
31,771 | 445
361 | 8,695
9,330 | 79,102
81,360 | 8,769
9,556 | 13 | 2,532
R 2,514 | | | 21,0/6 | 275
280 | 19,146
18,620 | 3,034 | 17,717 | 31,771
20,677 | 274 | 9,330 | 79,688 | 9,556
7,319 | 15 | R 2,533 | | 2011
2012 | 20,233
R 17,847 | 262 | 18,737 | 2,951
2,759 | 17,954
17,967 | 30,677
R 30,718 | 274
250 | 8 9,212
R 9,126 | 79,688
R 79,556 | 7,319
8,285 | 10 | R 2,391 | | 2012 | 19,000 | 262
284 | 18,737
21,710 | 2,759
1.785 | 17,967 | 30,718 | 250
176 | 8,655 | 82,615 | 8,285
7,168 | 10 | 2,391 | | 2013 | 19,000 | ∠84 | 21,110 | 1,785 | 19,013 | 30,075 | 1/0 | 0,000 | 02,015 | 7,108 | 15 | 2,420 | ^a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. separately identified. A Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other Petroleum." Liquefied petroleum gases, includes ethane and olefins. Motor gasoline as it is consumed; includes fuel ethanol blended into motor gasoline. Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." f Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be ⁹ Includes denaturant. Pre-2005 estimates are not comparable to those for later years. See Section 5 of Technical Notes. NA = Not available. Where shown, R = Revised data and (s) = Value less than 0.5. Note: Totals may not equal sum of components due to independent rounding. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. K Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2013, Kansas (Trillion Btu) | | | | | | Fossi | Fuels | | | | | Fossil
(as comi | | |--------------|------------------|--|------------------------|--------------------------|------------------|---|----------------------|--------------------|---------------------|------------------------|--|---| | | | | | | | Petroleum | | | | | (2000) | | | Year | Coal | Natural Gas
excluding
Supplemental
Gaseous Fuels ^a | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ^c | Motor
Gasoline
excluding
Fuel Ethanol ^a | Residual
Fuel Oil | Other ^d | Total | Total | Natural Gas
including
Supplemental
Gaseous Fuels ^a | Motor
Gasoline
including
Fuel Ethanol ^a | | 1960 | 15.7 | 373.7 | 27.6 | 5.1 | 21.9 | 124.6 | 15.1 | 58.7 | 252.9 | 642.3 | 373.7 | 124.6 | | 1965 | 15.3 | 440.8 | 30.6 | 5.7 | 25.5 | 134.1 | 6.7 | 74.8 | 277.4 | 733.5 | 440.8 | 134.1 | | 1970 | 10.7 | 574.5 | 44.0 | 8.6 | 30.5 | 151.5 |
7.1 | 61.3 | 303.1 | 888.3 | 574.5 | 151.5 | | 1971 | 10.8 | 605.8 | 48.8 | 8.4 | 29.6 | 153.1 | 5.1 | 61.5 | 306.4 | 923.0 | 605.8 | 153.1 | | 1972 | 12.4 | 626.9 | 52.5 | 8.0 | 31.5 | 163.2 | 14.2 | 63.8 | 333.3 | 972.5 | 626.9 | 163.2 | | 1973 | 24.6 | 597.2 | 60.0 | 7.7 | 32.1 | 164.3 | 16.0 | 73.0 | 353.1 | 974.9 | 597.2 | 164.3 | | 1974 | 39.1 | 578.8 | 62.8 | 7.7 | 31.9 | 162.8 | 17.5 | 71.8 | 354.6 | 972.5 | 578.8 | 162.8 | | 1975 | 62.3 | 490.7 | 65.7 | 7.2 | 33.4 | 168.1 | 40.0 | 70.0 | 384.4 | 937.4 | 490.7 | 168.1 | | 1976 | 73.4 | 505.4 | 70.3 | 6.8 | 37.4 | 177.8 | 39.1 | 71.4 | 402.8 | 981.6 | 505.4 | 177.8 | | 1977 | 89.5 | 497.3 | 72.6 | 7.9 | 37.7 | 174.8 | 39.5 | 77.1 | 409.5 | 996.3 | 497.3 | 174.8 | | 1978 | 136.8 | 508.0 | 83.0 | 8.4 | 33.8 | 176.0 | 42.6 | 80.1 | 423.8 | 1,068.6 | 508.0 | 176.0 | | 1979
1980 | 147.5
191.6 | 571.3
482.0 | 113.9
86.0 | 10.7
13.8 | 36.5
31.1 | 167.5
155.4 | 29.7
9.4 | 81.5
77.6 | 439.8
373.3 | 1,158.5
1.046.8 | 571.3
482.0 | 167.5 | | 1980 | 212.9 | 462.0
422.6 | 78.1 | 13.6 | 27.3 | 153.4 | 9.4
6.5 | 77.6
56.4 | 373.3
335.7 | 971.2 | 422.6 | 155.4
153.8 | | 1982 | 212.5 | 400.5 | 80.5 | 10.2 | 43.1 | 150.2 | 6.5 | 47.8 | 338.3 | 951.3 | 400.5 | 150.2 | | 1983 | 231.2 | 345.9 | 81.6 | 8.2 | 43.1 | 150.2 | 12.3 | 47.8
49.9 | 345.7 | 922.7 | 345.9 | 150.2 | | 1984 | 274.8 | 360.8 | 86.0 | 18.7 | 95.0 | 149.7 | 7.3 | 54.1 | 410.7 | 1.046.3 | 360.8 | 149.7 | | 1985 | 259.5 | 354.8 | 86.8 | 24.8 | 87.4 | 148.2 | 0.5 | 46.9 | 394.8 | 1,009.0 | 354.8 | 148.2 | | 1986 | 251.7 | 308.0 | 82.9 | 39.7 | 60.0 | 149.5 | 3.1 | 57.3 | 392.4 | 952.1 | 308.0 | 149.5 | | 1987 | 267.4 | 343.2 | 99.4 | 24.1 | 58.6 | 153.0 | 2.2 | 59.7 | 397.0 | 1.007.6 | 343.2 | 153.0 | | 1988 | 269.3 | 348.0 | 97.6 | 23.4 | 69.0 | 161.9 | 5.1 | 77.5 | 434.5 | 1,051.8 | 348.0 | 161.9 | | 1989 | 267.9 | 338.6 | 93.8 | 21.5 | 69.1 | 156.8 | 2.3 | 69.9 | 413.4 | 1,019.9 | 338.6 | 156.8 | | 1990 | 271.7 | 352.6 | 97.3 | 20.7 | 55.9 | 150.4 | 1.4 | 75.0 | 400.7 | 1,025.1 | 352.6 | 150.4 | | 1991 | 268.5 | 373.2 | 91.0 | 18.3 | 47.7 | 147.3 | 0.8 | 62.9 | 368.0 | 1,009.7 | 373.2 | 147.3 | | 1992 | 253.3 | 338.8 | 86.8 | 23.2 | 60.4 | 146 1 | 1.1 | 66.2 | 383.8 | 975.9 | 338.8 | 146 1 | | 1993 | 302.6 | 386.5 | 93.3 | 20.2 | 29.7 | R 148.5 | 2.3 | 59.8 | R 353.8 | R 1,042.9 | 386.5 | R 149.0 | | 1994 | 301.0 | 415.6 | R 85 5 | 11.0 | 28.1 | 151.6 | 1.2 | 70.5 | 347.9 | 1.064.4 | 415.6 | 152 1 | | 1995 | 289.7 | 367.7 | R 106 1 | 13.7 | 18.1 | R 153.0 | 0.2 | 63.6 | 354.6 | 1,012.0 | 367.7 | H 153 4 | | 1996 | 338.3 | 360.9 | H 96 4 | 11.4 | 37.8 | 161.1 | 1.8 | 64.0 | 372.6 | 1,071.8 | 360.9 | H 161.4 | | 1997 | 310.9 | 338.6 | H 95.3 | 12.1 | 52.6 | _ 159.8 | 1.6 | 54.8 | 376.2 | 1,025.7 | 338.6 | H 160 1 | | 1998 | 309.4 | 325.0 | H 92 7 | 12.2 | 51.1 | R 166.6 | 1.7 | 54.4 | 378.7 | 1,013.1 | 325.0 | H 166.9 | | 1999 | 329.3 | 302.0 | R 91.1 | 19.7 | 78.4 | H 174 4 | 3.6 | 55.7 | _ 422.9 | 1,054.2 | 302.0 | H 174.9 | | 2000 | 362.8 | 314.9 | R 86.4 | 18.3 | 62.5 | R 166.1 | 5.9 | 52.2 | R 391.5 | 1,069.1 | 314.9 | R 166.3 | | 2001 | 354.6 | 273.9 | R 90.5 | 12.8 | 40.1 | ^H 157.8 | 8.2 | 69.4 | R 378.7 | 1,007.2 | 273.9 | R 158.0 | | 2002 | 391.7 | 307.4 | R 95.2 | 12.1 | 38.6 | ្ន 146.4 | 6.2 | 64.6 | 363.2 | 1,062.3 | 307.4 | R 148.9 | | 2003 | 389.5 | 284.7 | R 99.5 | 18.3 | 61.1 | R 166.8 | 13.6 | 61.6 | R 420.9 | R 1,095.1 | 284.7 | R 170.2 | | 2004 | 385.5 | 260.1 | R 99.8 | 17.6 | 53.4 | R 165.1 | 13.7 | R 64.1 | H 413.7 | R 1,059.3 | 260.1 | R 165.5 | | 2005 | 379.8 | 258.7 | R 105.6 | 10.0 | 10.6 | R 143.8 | 12.9 | R 59.2 | R 342.1 | R 980.6 | 258.7 | R 146.4 | | 2006 | 364.2 | 269.3 | R 110.1 | 9.9 | 7.2 | R 161.4 | 3.9 | R 59.3 | R 351.9 | R 985.3 | 269.3 | R 164.1 | | 2007 | 396.3 | 291.7 | R 112.2 | 8.7 | 62.8 | R 159.8 | 2.9 | R 58.3 | R 404.7 | R 1,092.7 | 291.7 | R 164.8 | | 2008 | 371.8 | 292.5 | R 116.2 | 9.8 | 54.1 | R 150.8 | 7.7 | R 52.0
R 53.4 | R 390.6
R 393.5 | R 1,054.9
R 1,042.0 | 292.5
292.4 | R 160.0
R 162.0 | | 2009 | 356.1 | 292.4 | R 112.6
R 110.6 | 13.9 | 57.5 | R 153.3 | 2.8 | R 57.2 | 11 393.5
B 400.5 | 1,042.0
B 1,040.0 | | 1 162.0
B 161.0 | | 2010 | 359.9 | 280.4 | R 107.5 | 17.2 | 62.6 | R 152.6 | 2.3 | R 56.5 | R 402.5 | R 1,042.8 | 280.4 | R 161.3 | | 2011 | 346.5
R 307.6 | 285.3
R 268.1 | R 107.5 | 16.7 | 62.8 | R 146.7
R 147.2 | 1.7 | R 56.1 | R 392.0
R 391.8 | R 1,023.9
R 967.4 | 285.3
R 268.1 | R 155.5 | | 2012
2013 | 326.8 | 11 268.1
289.0 | 1108.2
125.4 | 15.6
10.1 | 63.1
69.3 | 147.2 | 1.6
1.1 | 53.1 | 405.8 | 1,021.7 | 268.1 | R 155.5
155.3 | | 2013 | 3∠0.8 | 209.0 | 125.4 | 10.1 | 09.3 | 140.9 | 1.1 | ეა. I | 400.6 | 1,021.7 | 209.0 | 135.3 | ^a Supplemental gaseous fuels (SGF) and fuel ethanol are consumed with natural gas and motor gasoline, respectively. In this table, natural gas excluding SGF and motor gasoline excluding fuel ethanol are presented so that a fossil fuel total can be calculated. Natural gas including SGF and motor gasoline including fuel ethanol are presented separately for reference. ^b Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other Petroleum." ^c Liquidid petroleum gases includes ethanological. ^c Liquefied petroleum gases, includes ethane and olefins. d Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." Where shown, R = Revised data and (s) = Value less than +0.05 and greater than -0.05 trillion Btu. Note: Totals may not equal sum of components due to independent rounding. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2013, Kansas (Continued) (Trillion Btu) | | | | | | R | enewable Energy | / | | | | | | | |--------------|------------------------------|--|--------------------------------|------------------------------|--|-------------------|-----------------|-----------------------|--------------|-------------------|--------------------------------------|--|------------------------| | | | | | Bior | nass | | | | | | Net | | | | Year | Nuclear
Electric
Power | Hydro-
electric
Power ^e | Wood and
Waste ^f | Fuel
Ethanol ^g | Losses
and Co-
products ^h | Total | Geo-
thermal | Solar/PV ⁱ | Wind | Total | Interstate
Flow of
Electricity | Net
Electricity
Imports ^k | Total | | 1960 | 0.0 | 0.2 | 3.9 | NA | NA | 3.9 | 0.0 | NA | NA | 4.1 | -14.6 | 0.0 | 631.8 | | 1965 | 0.0 | 0.1 | 3.4 | NA | NA | 3.4 | 0.0 | NA | NA | 3.5 | -12.8 | 0.0 | 724.2 | | 1970 | 0.0 | 0.1 | 3.7 | NA | NA | 3.7 | 0.0 | NA | NA | 3.7 | -17.6 | 0.0 | 874.4 | | 1971 | 0.0 | 0.1 | 3.9 | NA | NA | 3.9 | 0.0 | NA | NA | 3.9 | -18.5 | 0.0 | 908.4 | | 1972 | 0.0 | (s)
(s)
0.1 | 5.7 | NA | NA | 5.7 | 0.0 | NA | NA | 5.7 | -16.9 | 0.0 | 961.3 | | 1973 | 0.0 | (s) | 6.0 | NA | NA | 6.0 | 0.0 | NA | NA | 6.0 | -14.4 | 0.0 | 966.5 | | 1974
1975 | 0.0 | 0.1 | 5.8
5.8 | NA
NA | NA
NA | 5.8
5.8 | 0.0
0.0 | NA
NA | NA
NA | 5.9 | -18.5
-18.0 | 0.0 | 959.9 | | 1975 | 0.0
0.0 | (s)
0.1 | 5.8
6.5 | NA
NA | NA
NA | 5.8
6.5 | 0.0 | NA
NA | NA
NA | 5.8
6.5 | -18.0
-15.3 | 0.0
0.0 | 925.2
972.9 | | 1976 | 0.0 | | 6.8 | NA
NA | NA
NA | 6.8 | 0.0 | NA
NA | NA
NA | 6.9 | -15.3
-21.5 | 0.0 | 972.9
981.6 | | 1977 | 0.0 | (s)
(s) | 7.5 | NA
NA | NA
NA | 7.5 | 0.0 | NA
NA | NA
NA | 7.5 | -21.5
-38.6 | 0.0 | 1,037.5 | | 1979 | 0.0 | (9) | 7.9 | NA | NA | 7.9 | 0.0 | NA | NA | 7.9 | -33.7 | 0.0 | 1,132.8 | | 1980 | 0.0 | (s)
0.1 | 9.0 | NA | NA | 9.0 | 0.0 | NA | NA | 9.1 | -33.2 | 0.0 | 1,022.7 | | 1981 | 0.0 | 0.1 | 8.1 | 0.1 | 0.2 | 8.4 | 0.0 | NA | NA | 8.5 | -31.8 | 0.0 | 947.9 | | 1982 | 0.0 | 0.1 | 9.7 | 0.1 | 0.6 | 10.3 | 0.0 | NA | NA | 10.4 | -15.5 | 0.0 | 946.1 | | 1983 | 0.0 | 0.1 | 9.0 | 0.5 | 1.1 | 10.6 | 0.0 | NA | 0.0 | 10.7 | -15.0 | 0.0 | 918.4 | | 1984 | 0.0 | 0.1 | 11.1 | 2.1 | 1.4 | 14.6 | 0.0 | 0.0 | (s) | 14.7 | -41.1 | 0.0 | 1,020.0 | | 1985 | 41.0 | 0.1 | 11.5 | 1.8 | 1.4 | 14.8 | 0.0 | 0.0 | (s) | 14.8 | -50.2 | 0.0 | 1,014.6 | | 1986 | 73.6 | 0.1 | 18.5 | 1.8 | 1.5 | 21.7 | 0.0 | 0.0 | (s) | 21.8 | -71.7 | 0.0 | 975.9 | | 1987 | 67.6 | 0.1 | 17.6 | 1.2 | 1.7 | 20.4 | 0.0 | 0.0 | (s) | 20.5 | -78.5 | 0.0 | 1,017.1 | | 1988 | 70.5 | 0.1 | 18.9 | 1.0 | 1.7 | 21.6 | 0.0 | 0.0 | (s)
(s) | 21.7 | -72.6 | 0.0 | 1,071.5 | | 1989 | 102.8 | 0.1 | 15.0 | 1.0 | 1.6 | 17.6 | (s) | (s) | | 17.7 | -95.8 | 0.0 | 1,044.6 | | 1990 | 83.3 | 0.1 | 11.8 | 0.6 | 1.3 | 13.7 | (s)
0.1 | (s) | (s) | 13.9 | -55.9 | 0.0 | 1,066.5 | | 1991 | 61.4 | 0.1 | 12.0 | 0.6 | 1.5 | 14.1 | | (s) | (s) | 14.3 | -24.5 | 0.0 | 1,061.0 | | 1992
1993 | 88.9
83.0 | 0.1 | 12.1
10.9 | 0.6 | 1.3 | 14.0 | 0.1 | (s) | (s) | 14.2 | -31.0 | 0.0 | 1,048.0
R 1,075.9 | | 1993 | 83.0
89.1 | 0.1
0.1 | 10.9 | 0.5
0.5 | 1.9
2.1 | 13.3
12.8 | 0.1
0.1 | (s) | (s) | 13.5
13.1 | -63.5
-65.3 | 0.0
0.0 | R 1,101.3 | | 1994 | 105.7 | 0.1 | 10.3 | 0.5 | 1.9 | 12.7 | 0.1 | (s)
(s) | (s)
(s) | 12.9 | -65.2 | 0.0 | 1,065.6 | | 1996 | 86.2 | 0.1 | 10.5 | 0.4 | 0.8 | 11.5 | 0.1 | (s) | 0.0 | 11.8 | -74.0 | 0.0 | 1,095.8 | | 1997 | 88.5 | 0.1 | 8.4 | 0.2 | 1.3 | 10.0 | 0.2 | (s) | 0.0 | 10.4 | -74.0 | (s) | 1,085.5 | | 1998 | 109.2 | 0.1 | 7.7 | 0.3 | 1.5 | 9.5 | 0.2 | (s) | 0.0 | 9.9 | -58.5 | (s) | 1,073.8 | | 1999 | 95.7 | 0.1 | 7.9 | 0.5 |
1.4 | 9.7 | 0.3 | (s) | 0.0 | 10.1 | -66.9 | (s) | 1.093.1 | | 2000 | 94.5 | 0.2 | 7.6 | 0.2 | 1.6 | 9.5 | 0.3 | (s) | 0.0 | 9.9 | -73.4 | 0.0 | 1,100.1 | | 2001 | 108.1 | 0.3 | 8.0 | 0.2 | 1.8 | 9.9 | 0.3 | (s) | 0.4 | 10.9 | -77.3 | 0.0 | 1.048.8 | | 2002 | 94.4 | 0.1 | 8.1 | 2.4 | 3.8 | _ 14.3 | 0.3 | (s) | 4.7 | 19.5 | -91.8 | 0.0 | 1,084.4 | | 2003 | 92.6 | 0.1 | 8.3 | 3.5 | 5.9 | R 176 | 0.4 | (s) | 3.7 | 21.9
E 19.5 | -84.7 | 0.0 | R 1,125.0 | | 2004 | 105.7 | 0.1 | 8.4 | 0.3 | _ 6.6 | H 15.3 | 0.5 | (s) | 3.6 | R 19.5 | -79.0 | (s) | H 1.105.6 | | 2005 | 92.1 | 0.1 | 7.6 | 2.6 | R 7.7 | R 17.9 | 0.5 | (s) | 4.3 | R 22.8 | -45.8 | (s)
0.0 | H 1 049 7 | | 2006 | 97.6 | 0.1 | 4.7 | 2.6 | R 10.0 | R 17.3 | 0.6 | (s) | 9.8 | R 27.9 | -33.0 | 0.0 | R 1,077.8 | | 2007 | 108.8 | 0.1 | 5.1 | 5.0 | R 13.1 | R 23.3 | 0.6 | (s) | 11.4 | R 35.4 | -77.8 | (s)
0.0 | R 1,159.1 | | 2008 | 88.8 | 0.1 | 5.6 | 9.1 | R 24.7 | R 39.4 | 0.7 | (s) | 17.3 | R 57.6 | R -46.5 | | R 1,154.8 | | 2009 | 91.7 | 0.1 | 5.7 | 8.8
R 8.7 | R 22.6
R 24.9 | R 37.1
R 39.3 | 0.8 | (s) | 27.9 | R 66.0
R 73.6 | -65.4 | (s)
0.0 | R 1,134.3 | | 2010 | 99.9 | 0.1 | 5.8
R 8.1 | R 8.7 | R 24.9 | R 41.1 | 0.9 | (s) | 33.2 | R 78.5 | -53.7 | | R 1,162.6
R 1,158.0 | | 2011
2012 | 76.6
86.8 | 0.1
0.1 | 1 8.1
R 7.4 | 11 8.8
R 8.3 | R 22.8 | 11 41.1
R 38.5 | 1.0 | (s)
0.1 | 36.1
49.4 | 11 /8.5
R 89.1 | -20.9
-13.9 | 0.0
0.0 | R 1,158.0 | | 2012 | 74.9 | 0.1 | 8.5 | 8.4 | 23.8 | 40.7 | 1.0
1.0 | 0.1 | 49.4
90.0 | 131.9 | -13.9
-65.4 | 0.0 | 1,163.1 | | 2013 | 74.8 | U. 1 | 0.0 | 0.4 | 23.0 | 40.7 | 1.0 | 0.1 | 90.0 | 131.9 | -05.4 | 0.0 | 1,100.1 | ^e Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. during the year. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. Wood, wood-dérived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. ⁹ Excludes denaturant. Pre-2005 estimates are not comparable to those for later years. See Section 5 of h Losses and co-products from the production of fuel ethanol. Solar thermal and photovoltaic energy. I Includes the energy losses associated with the generation, transmission, and distribution of the electricity flowing across state lines. A positive number indicates that more electricity came into the state than went out of the state k Electricity traded with Canada and Mexico. Calculated by converting net imports in kilowatthours by 3,412 Btu per kilowatthour. NA = Not available. Where shown, R = Revised data and (s) = Value less than +0.05 and greater than -0.05 trillion Btu. Note: Totals may not equal sum of components due to independent rounding. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT3. Total End-Use Energy Consumption Estimates, Selected Years, 1960-2013, Kansas | | Coal Thousand Short Tons 240 166 114 134 | Natural
Gas ^a Billion
Cubic Feet | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ° | Motor
Gasoline ^d | Residual
Fuel Oil | | | electric | | | 1 | | Electricity | | | | |--|---|---|--|--------------------------|------------------|--------------------------------|----------------------|--------------------|--------------------|-------------------------------|-------------------------------------|--|------------------------------|--|-------------------------------|------------------------------|---|------------------------| | 1960
1965
1970
1975
1980
1985
1990
1995
2000 | 240
166
114 | Cubic Feet 279 | 1 | | | | | Other ^e | Total | Power f,g | | | | Solar | Sales | | Electrical | | | 1965
1970
1975
1980
1985
1990
1995
2000 | 166
114 | | | | TI | housand Barrels | | | | Million
Kilowatt-
hours | Wood
and
Waste ^{g,h} | Losses
and Co-
products ⁱ | Geo-
thermal ^g | Thermal/
Photo-
voltaic ⁹ | Million
Kilowatt-
hours | Net
Energy ^{g,j} | System
Energy
Losses ^k | Total ^{g,j} | | 1965
1970
1975
1980
1985
1990
1995
2000 | 166
114 | | 4,629 | 952 | 5,590 | 23,712 | 2,161 | 9,602 | 46,647 | 0 | | | | | 7,019 | | | | | 1970
1975
1980
1985
1990
1995
2000 | 114 | | 4,629
5,186 | 1,053 | 6,521 | 25,525 | 2,161
910 | 12,322 | 51,518 | 0 | | | | | 9,750 | | | | | 1980
1985
1990
1995
2000 | 134 | 408 | 7,375 | 1,561 | 8,009 | 28,849 | 743 | 10,093 | 56,629 | 0 | | | | | 13,864 | | | | | 1985
1990
1995
2000 | | 371 | 9,734 | 1,310 | 8,857 | 32,004 | 2,231 | 11,475 | 65,612 | 0 | | | | | 17,523 | | | | | 1990
1995
2000 | 336 | 387 | 14,382 | 2,466 | 8,404 | 29,584 | 1,006 | 12,696 | 68,539 | 0 | | | | | 21,840 | | | | | 1995
2000 | 364 | 334 | 14,707 | 4,424 | 24,510 | 28,209 | 66 | 7,578 | 79,494 | 0 | | | | | 23,536 | | | | | 2000 | 157
175 | 326
339 | 16,567
18,073 | 3,701
2,414 | 15,565
4,924 | 28,626
29,402 | 208
30 | 12,171
10,169 | 76,838
65,011 | 0 | | | | | 27,149
30,357 | | | | | | 1/5 | 279 | 14,580 | 3,234 | 17,401 | 29,402
31.894 | 404 | 8.446 | 75,959 | 0 | | | | | 35,921 | | | | | | 166 | 249 | 15,357 | 2,259 | 11,122 | 30,297 | 325 | 11,152 | 70,511 | 0 | | | | | 35,847 | | | | | 2002 | 178 | 284 | 16,238 | 2,135 | 10,659 | 28,571 | 188 | 10,389 | 68,182 | 0 | | | | | 36,714 | | | | | 2003 | 158 | 267 | 16,953 | 3,228 | 16,944 | 32,721 | 632 | 9,969 | 80,447 | 0 | | | | | 36,735 | | | | | 2004 | 203 | 246 | 17,050 | 3,104 | 14,808 | 31,815 | 674 | 10,269 | 77,721 | 0 | | | | | 37,127 | | | | | 2005 | 205 | 241 | 18,012 | 1,758 | 2,768 | 28,162 | 333 | 9,620 | 60,653 | 0 | | | | | 39,024 | | | | | 2006 | 237 | 242 | 18,847 | 1,752 | 1,875 | 31,603 | 619 | 9,633 | 64,330 | 0 | | | | | 39,751 | | | | | 2007 | 241 | 261 | 19,297 | 1,543 | 17,592 | 31,979 | 464 | 9,130 | 80,004 | 0 | | | | | 40,166
B 20,005 | | | | | 2008
2009 | 162
105 | 256
255 | 20,013
19,385 | 1,735
2,447 | 15,110
16,277 | 31,204
31,768 | 1,220
445 | 8,244
8,428 | 77,526
78,749 | 0 | | | | | R 39,965
38,243 | | | | | 2010 | 111 | 247 | 19,049 | 3,034 | 17,717 | 31,771 | 361 | 9,132 | 81,064 | 0 | | | | | 40,421 | | | | | 2011 | 104 | 249 | 18,533 | 2,951 | 17,954 | 30,677 | 274 | 9,146 | 79,535 | 0 | | | | | 40,760 | | | | | 2012 | R 88 | 230 | 18,659 | 2,759 | 17,967 | R 30,718 | 250 | R 9,126 | R 79,478 | 0 | | | | | 40,293 | | | | | 2013 | 85 | 261 | 21,601 | 1,785 | 19,613 | 30,675 | 176 | 8,655 | 82,506 | 0 | | | | | 39,847 | | | | | | | | | | | | | | Trillion Btu | ı | | | | | | | | | | 1960 | 5.4 | 288.6 | 27.0 | 5.1 | 21.9 | 124.6 | 13.6 | 58.7 | 250.7 | 0.0 | 3.9 | NA | NA | NA | 23.9 | 572.6 | 59.2 | 631.8 | | 1965 | 3.7 | 328.4 | 30.2 | 5.7 | 25.5 | 134.1 | 5.7 | 74.8 | 276.0 | 0.0 | 3.4 | | NA | NA | 33.3 | 644.7 | 79.4 | 724.2 | | 1970 | 2.4 | 407.0 | 43.0 | 8.6 | 30.5 | 151.5 | 4.7 | 61.3 | 299.6 | 0.0 | 3.7 | NA | NA | NA | 47.3 | 760.0 | 114.4 | 874.4 | | 1975 | 2.7 | 364.1 | 56.7 | 7.2 | 33.4 | 168.1 | 14.0 | 70.0 | 349.4 | 0.0 | 5.8 | | NA | NA | 59.8 | 781.8 | 143.4 | 925.2 | | 1980 | 7.2 | 385.0 | 83.8 | 13.8 | 31.1 | 155.4 | 6.3 | 77.6 | 368.0 | 0.0 | 9.0 | | NA | NA | 74.5 | 843.7 | 179.0 | 1,022.7 | | 1985 | 7.8 | 334.3 | 85.7 | 24.8 | 87.4 | 148.2 | 0.4 | 46.9 | 393.5 | 0.0 | | | NA (a) | NA | 80.3 | 830.6 | 183.9 | 1,014.6 | | 1990
1995 | 3.8
4.2 | 325.5
340.1 | 96.5
R 105.2 | 20.7
13.7 | 55.9
18.1 | 150.4
R 153.4 | 1.3
0.2 | 75.0
63.6 | 399.9
354.1 | 0.0
0.0 | 11.8
10.3 | | (s)
0.1 | (s)
(s) | 92.6
103.6 | 835.5
814.5 | 230.9
251.1 | 1,066.5
1,065.6 | | 2000 | 3.5 | 281.0 | R 84.8 | 18.3 | 62.5 | R 166.3 | 2.5 | 52.2 | R 386.8 | 0.0 | 7.6 | | 0.3 | (s) | 122.6 | R 803.4 | 296.7 | 1,100.1 | | 2001 | 3.9 | 250.4 | R 89.4 | 12.8 | 40.1 | R 158.0 | 2.0 | 69.4 | 371.6 | 0.0 | 8.0 | | 0.3 | (s) | 122.3 | 758.2 | 290.7 | 1,048.8 | | 2002 | 4.3 | 286.0 | R _{94.5} | 12.1 | 38.6 | R 148.9 | 1.2 | 64.6 | 359.9 | 0.0 | 8.1 | | 0.3 | (s) | 125.3 | 787.7 | 296.7 | 1,084.4 | | 2003 | 3.8 | 270.2 | R 98.7 | 18.3 | 61.1 | R 170.2 | 4.0 | _ 61.6 | R 414.0 | 0.0 | 8.3 | 5.9 | 0.4 | (s) | 125.3 | R 827.9 | 297.1 | R 1,125.0 | | 2004 | 5.0 | 249.6 | R 99.2 | 17.6 | 53.4 | R 165.5 | 4.2 | R 64.1 | R 404 0 | 0.0 | 8.4 | | 0.5 | (s) | 126.7 | R 800.7 | 304.8 | R 1,105.6 | | 2005 | 5.0 | 244.5 | R 104.8 | 10.0 | 10.6 | R 146.4 | 2.1 | R 59.2 | H 333.1 | 0.0 | 7.6 | R 7.7 | 0.5 | (s) | 133.2 | R 731.5 | 318.1 | R 1,049.7 | | 2006 | 5.7 | 246.5 | R 109.4 | 9.9 | 7.2 | R 164.1 | 3.9 | R 59.3 | R 353.8 | 0.0 | 4.7 | | | (s) | 135.6 | R 756.9 | 320.9 | R 1,077.8 | | 2007
2008 | 5.8
4.0 | 265.6
265.4 | ^R 111.6
^R 115.7 | 8.7
9.8 | 62.8
54.1 | R 164.8
R 160.0 | 2.9
7.7 | R 56.1
R 50.5 | R 407.0
R 397.7 | 0.0
0.0 | 5.1
5.6 | ^R 13.1
^R 24.7 | 0.6
0.7 | (s) | 137.0
R 136.4 | R 834.4
R 834.6 | R 324.8
R 320.3 | R 1,159.1
R 1,154.8 | | 2008 | 2.5 | 259.9 | R 112.1 | 13.9 | 57.5 | R 162.0 | 2.8 | R 51.9 | R 400.2 | 0.0 | | | 0.7 | (s)
(s) | 130.4 | R 822.3 | 312.0 | R 1,134.3 | | 2010 | 2.5 | 252.0 | R 110.1 | 17.2 | 62.6 | R 161.3 | 2.8 | R 56.1 | R 400.2 | 0.0 | 5.7 | | 0.8 | (s) | 137.9 | R 833.1 | 329.5 | R 1,162.6 | | 2011 | 2.5 | 254.3 | R 107.0 | 16.7 | 62.8 | R 155.5 | 1.7 | R 56.1 | R 399.9 | 0.0 | R 7.4 | R 24.3 | 1.0 | (s) | 139.1 | R 828.5 |
329.5 | R 1,158.0 | | 2012 | 2.0 | R 234.9 | R 107.7 | 15.6 | 63.1 | R 155.5 | 1.6 | R 56.1 | R 399.6 | 0.0 | R 6.7 | | 1.0 | 0.1 | 137.5 | R 804.6 | 324.8 | R 1,129.4 | | 2013 | 2.0 | 265.3 | 124.7 | 10.1 | 69.3 | 155.3 | 1.1 | 53.1 | 413.6 | 0.0 | 7.6 | 23.8 | 1.0 | 0.1 | 136.0 | 849.4 | 313.7 | 1,163.1 | ^a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. blended into motor gasoline that is not included in the motor gasoline column. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. b Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other Petroleum." ^c Liquefied petroleum gases, includes ethane and olefins. d Beginning in 1993, includes fuel ethanol blended into motor gasoline. e Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." f Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. g There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in h Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. Losses and co-products from the production of fuel ethanol. ^j Beginning in 2009, includes wind energy consumed by the commercial and industrial sectors. From 1981 through 1992, includes fuel ethanol k Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. -- = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Total end-use consumption estimates are the sum of the consumption estimates for the residential, commercial, industrial, and transportation sectors. • Totals may not equal sum of components due to independent rounding. • The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. • See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT4. Residential Sector Energy Consumption Estimates, Selected Years, 1960-2013, Kansas | | | | | Petr | oleum | | Biomass | | | - | | | | |------------------------------|------------------------|-----------------------------|------------------------|------------|--|--|--------------------------|-------------------------|-------------------------|--------------------------------------|------------------------------|---|--| | | Coal a | Natural
Gas ^b | Distillate
Fuel Oil | Kerosene | LPG ° | Total | Wood d | | | Retail
Electricity
Sales | | Electrical
System | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | Thousa | nd Barrels | | Thousand
Cords | Geothermal ^e | Solar/PV ^{e,f} | Million
Kilowatthours | Net
Energy ^{e,g} | Energy
Losses h | Total ^{e,g} | | 1960 | 37 | 73 | 53 | 303 | 3,609 | 3.966 | 157 | | | 2.360 | | | | | 1960
1965
1970
1975 | 37
10 | 73
87 | 53
50 | 1,285 | 4 179 | 3,966
5,515
5,221
4,934 | 102 | | | 2,360
3,251 | | | | | 1970 | 6 | 97 | 53
96 | 116 | 5,052
4,778 | 5,221 | 80
93 | | | 5,348
5,695 | | | | | 1975 | 0 | 98 | 96 | 60 | 4,778 | 4,934 | 93 | | | 5,695
7,189 | | | | | 1980
1985 | (s) | 85
78 | 150
68 | 5
27 | 2,181
1,538 | 2,335
1,633 | 439
560 | | | 8,195 | | | | | 1990
1995
1996
1997 | (s) | 71 | 28 | 11 | 1,238 | 1,277
1,565
2,101
2,541
2,686
3,859
2,757
2,017 | 317 | | | 9.515 | | | | | 1995 | (s)
5 | 71
76 | 28
14 | 13 | 1,238
1,538 | 1,565 | 278 | | | 9,515
10,356
10,672 | | | | | 1996 | 9 | 85 | 17 | 19 | 2 064 | 2,101 | 289 | | | 10,672 | | | | | 1997 | (s)
(s) | 69 | 35 | 12 | 2,494 | 2,541 | 225 | | | 10,862 | | | | | 1998
1999 | (S) | 70
68 | 11
14 | 18
346 | 2,657 | 2,686 | 200
205 | | | 11,832
11,347 | | | | | 2000 | 1 | 71 | 17 | 20 | 2,494
2,657
3,499
2,720
1,959 | 2 757 | 203 | | | 12 528 | | | | | 2000
2001 | (s) | 70 | 44 | 14 | 1.959 | 2.017 | 218 | | | 12,528
12,062 | | | | | 2002
2003
2004
2005 | (s) | 71 | 36 | 10 | 2,356 | 2,401
2,583
2,355
2,257 | 221
232 | | | 12,745
12,602
12,417
13,406 | | | | | 2003 | (s)
0 | 70 | 18 | 11 | 2,553 | 2,583 | 232 | | | 12,602 | | | | | 2004 | 0 | 65
65 | 13 | 10 | 2,332 | 2,355 | 238
198 | | | 12,417 | | | | | 2005 | (s) | 57 | 4 3 | 10
5 | 1,630 | 2,257 | 176 | | | 13,406 | | | | | 2006
2007 | (3) | 57
63 | 2 | 2 | 2,356
2,553
2,332
2,244
1,630
2,117
2,744
2,594 | 1,638
2,121
2,749
2,601 | 194 | | | 13,503
13,806
R 13,502 | | | | | 2008 | ŏ | 70 | 4 | 1 | 2,744 | 2,749 | 218 | | | R 13,502 | | | | | 2008
2009 | Ō | 71 | 4 | 3 | 2,594 | 2,601 | 226 | | | 13.149 | | | | | 2010
2011 | 0 | 67
65 | 3 | 2 | 2,332
2,210 | 2,337
2,218 | 197
202 | | | 14,334
14,344 | | | | | 2011
2012 | 0 | 65 | / | 1 (2) | 2,210 | 2,218 | 202
188 | | | 14,344 | | | | | 2012 | 0 | 50
68 | 8
3 | (s)
(s) | 1,768
2,057 | 1,777
2,060 | 260 | | | 13,797
13,593 | | | | | | | | | | | | Trillion Btu | | | | | | | | 1960 | 0.8 | 76.1 | 0.3 | 1.7 | 13.8 | 15.9 | 3.1 | NA | NA | 8.1 | 103.9 | 19.9 | 123.8 | | 1965 | 0.2 | 86.4 | 0.3
0.3
0.3 | 7.3 | 16.0 | 23.6 | 2.0 | NA | NA | 11.1 | 123.3 | 26.5 | 149.8 | | 1965
1970 | 0.1 | 86.4
97.1 | 0.3 | 7.3
0.7 | 19.4 | 20.3 | 1.6 | NA | NA | 18.2 | 123.3
137.4 | 44.1 | 149.8
181.6 | | 1975
1980 | 0.0 | 96.6 | 0.6 | 0.3 | 18.3 | 19.2 | 1.9 | NA | NA | 19.4
24.5 | 137.1 | 46.6 | 183.7
186.3 | | 1980 | (s) | 84.8 | 0.9 | (s)
0.2 | 8.4 | 9.3 | 8.8 | NA | NA | 24.5 | 127.4 | 58.9 | 186.3 | | 1985
1990 | (s) | 78.3
71.3 | 0.4
0.2 | 0.2 | 5.9
4.7 | 6.4
5.0 | 11.2 | NA
(s) | NA
(s) | 28.0
32.5 | 124.0
115.1 | 64.0
80.9 | 188.0 | | 1995 | (s)
0.1 | 76.1 | 0.2 | 0.1 | 4.7
5.9 | 6.1 | 5.6 | (s) | (S) | 35.3 | 123.1 | 85.7 | 208.9 | | 1995
1996 | 0.2 | 85.1 | 0.1 | 0.1 | 5.9
7.9 | 8.1 | 6.3
5.6
5.8
4.5 | (s)
(s)
(s) | (s)
(s)
(s) | 36.4 | 123.2
135.7 | 89.6 | 188.0
196.0
208.9
225.3 | | 1997
1998 | (s) | 69.6 | 0.2 | 0.1 | 9.6 | 9.8 | 4.5 | (s) | (s) | 37.1 | 121.0 | 92.2 | 213.2
221.6
220.1
232.5
221.7
231.7 | | 1998 | (s)
(s) | 69.8 | 0.1 | 0.1 | 10.2 | 10.4 | 4.0 | (s)
(s) | (s)
(s) | 40.4
38.7 | 124.6
126.2 | 97.0
94.0
103.5 | 221.6 | | 1999
2000 | (s) | 67.8
71.1 | 0.1
0.1 | 2.0
0.1 | 13.4
10.4 | 15.5
10.6 | 4.1
4.4 | (s) | | 38.7
42.7 | 126.2
129.0 | 94.0 | 220.1 | | 2000 | (s)
(s) | 71.1
70.5 | 0.1 | 0.1 | 75 | 7 9 | 4.4 | (s)
(s) | (s)
(s) | 42.7
41.2 | 129.0 | 103.5
97.8 | 232.3
221.7 | | 2001
2002 | (s) | 70.5
71.5 | 0.2 | 0.1 | 7.5
9.0 | 7.9
9.3 | 4.4 | (s) | (s) | 41.2
43.5 | 123.9
128.7 | 97.8
103.0 | 231.7 | | 2003 | (s)
0.0 | 71.2 | 0.1 | 0.1 | 9.8 | 10.0 | 4.6 | 0.1 | (s) | 43.0 | 128.9 | 101.9 | 230.8 | | 2004 | Ò.Ó | 65.9
65.9 | 0.1 | 0.1 | 8.9 | 9.1 | 4.8
4.0 | 0.1 | (s) | 42.4 | 122.2 | 1010 | 224.1 | | 2005
2006
2007 | 0.0 | 65.9 | (s) | 0.1 | 8.6 | 8.7 | 4.0 | 0.1 | (s) | 45.7 | 124.3 | 109.3 | 233.6 | | 2006 | (s)
0.0 | 58.2
64.2 | (s) | (s)
(s) | 6.3
8.1 | 6.3
8.1 | 3.5
3.9 | 0.1
0.1 | (s)
(s) | 46.1
_ 47.1 | 114.2
_ 123.5 | 109.0
R 111.6 | 223.2 | | 2007 | 0.0 | 72 Q | (s)
(s) | (S)
(S) | 10.5 | 10.6 | 4.4 | 0.1 | (S)
(S) | R 46.1 | R 134.0 | R 108 2 | 223.2
235.1
R 242.2 | | 2008
2009 | 0.0 | 72.9
72.5 | (s) | (s) | 10.0 | 10.0 | 4.5 | 0.1 | (s) | 44.9 | 132.0 | 107.3 | 239.3 | | 2010
2011 | 0.0 | 68 4 | (s) | (s) | 8.9 | 9.0 | 3.9
4.0 | 0.2 | (s) | 48.9 | 130.4 | R 116.8 | 247.3 | | 2011 | 0.0 | 66.8
R 51.6 | (s) | (s) | 8.5 | 8.5 | 4.0 | 0.6 | (s)
(s)
0.1 | 48.9 | 128.9 | 101.9
109.0
R 111.6
R 108.2
107.3
R 116.8
R 115.9 | 239.3
247.3
244.9
R 220.9 | | 2012 | 0.0 | ^H 51.6
69.3 | (s) | (s) | 6.8 | 6.8 | 3.8
5.2 | 0.3
0.3 | 0.1 | 47.1 | 109.6 | 111.2 | н 220.9
236.1 | | 2013 | 0.0 | 69.3 | (s) | (s) | 7.9 | 7.9 | 5.2 | 0.3 | 0.1 | 46.4 | 129.1 | 107.0 | 230.1 | a Beginning in 2008, data are no longer collected and are assumed to be zero. b Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. c Liquefied petroleum gases, includes ethane and olefins. d Wood and wood-derived fuels. e There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. [†] Solar thermal and photovoltaic energy. Includes distributed solar thermal and photovoltaic energy used in the commercial and industrial sectors. ⁹ Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are
included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. ^h Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. ^{- =} Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. K Table CT5. Commercial Sector Energy Consumption Estimates, Selected Years, 1960-2013, Kansas | | | | | | Pe | troleum | | | | Biomass | | | | | | |--------------|--------------------------|-----------------------------|------------------------|-------------------|------------------|--------------------------------|----------------------|--------------------|--|-------------------------------------|-------------------------|--------------------------------|------------------------------|---|----------------------| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | Kerosene | LPG ^b | Motor
Gasoline ^c | Residual
Fuel Oil | Total ^d | Hydro-
electric
Power ^{e,f} | M 1 | | Retail
Electricity
Sales | | Electrical | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | Thous | and Barrels | | | Million
Kilowatthours | Wood
and
Waste ^{f,g} | Geothermal ^f | Million
Kilowatthours | Net
Energy ^{f,h} | System
Energy
Losses ⁱ | Total ^{f,h} | | 1960 | 25
7 | 41 | 115 | 87 | 446 | 179 | 47 | 874 | NA | | | 1,727 | | | | | 1965
1970 | 4 | 38
53 | 109
115 | 367
33 | 517
624 | 204
215 | 19
34 | 1,215
1,022 | NA
NA | | | 2,597
3,967 | | | | | 1975 | Ö | 53
52 | 209 | 33
17 | 591 | 268 | 36 | 1,121 | NA | | | 5,614 | | | | | 1980 | 4 | 59
57 | 360
725 | 10 | 270 | 279
177 | 0 | 918 | NA | | | 6,806 | | | | | 1985
1990 | (s) | 57
56 | 725
329 | 10
6 | 190
153 | 177
162 | 0
27 | 1,102
677 | NA
0 | | | 8,174
9,547 | | | | | 1995 | (s)
33 | 56
53
57 | 562 | 6 | 190 | 74 | 12 | 844 | ő | | | 10,645 | | | | | 1996 | 69 | 57 | 554 | 5 | 255 | 99 | 2 | 915 | 0 | | | 11.388 | | | | | 1997
1998 | 2 | 41 | 473
441 | 28
9 | 308
328 | 90
94 | 0
79 | 899
951 | 0 | | | 12,043
12,546 | | | | | 1999 | (s)
6 | 41
42
39 | 474 | 4 | 432 | 61 | 0 | 971 | 0 | | | 12,258 | | | | | 2000 | 10 | 40 | 571 | 5 | 336 | 85 | 3 | 1,001 | Ö | | | 13,171 | | | | | 2001
2002 | (s)
(s)
(s)
0 | 38
39
38 | 807
636 | 7
5 | 242
291 | 85
78
43 | 7
9 | 1,140
984 | 0 | | | 13,215
13,773 | == | | | | 2002 | (S)
(S) | 38 | 655 | 5
5 | 277 | 108 | 0 | 1,045 | 0 | | | 13,773 | | | | | 2004 | Ő | 37 | 576 | 8 | 291 | 82
74 | ŏ | 957 | Ŏ | | | 13.831 | | | | | 2005 | 0 | 30 | 244 | 14
9 | 294 | 74 | 0 | 627 | 0 | | | 14,453 | | | | | 2006
2007 | (s)
0 | 28
31 | 290
267 | 9 | 138
267 | 131
74 | 0 | 567
611 | 0 | | | 14,786
_ 15,474 | | | | | 2008 | ŏ | 34 | 301 | 2 | 462 | 62
75 | ŏ | 826 | ŏ | | | ^R 15,496 | | | | | 2009 | 0 | 33 | 309 | 2 | 401 | 75 | (s) | 787 | 0 | | | 15,007 | | | | | 2010
2011 | 0 | 32 | 245
279 | 2 | 484
324 | 76
54 | (s)
(s) | 807
_ 659 | 0 | | | 15,436
15,609 | | | | | 2012 | 0 | 32
32
25
33 | 374 | i | 221 | 76
54
96 | 0 | R 690 | 0 | | | 15.456 | | | | | 2013 | 0 | 33 | 328 | 1 | 296 | 35 | 0 | 661 | 0 | | | 15,245 | | | | | | | | | | | | | Trillion Btu | | | | | | | | | 1960 | 0.6 | 42.6 | 0.7 | 0.5 | 1.7 | 0.9 | 0.3 | 4.1 | NA | 0.1 | NA | 5.9 | 53.2 | 14.6 | 67.8 | | 1965
1970 | 0.2 | 38.3
52.5 | 0.6 | 2.1 | 2.0 | 1.1 | 0.1
0.2 | 5.9 | NA
NA | (s) | NA
NA | 8.9 | 53.2
70.8 | 21.2 | 74.4 | | 1975 | 0.1
0.0 | 50.8 | 0.7
1.2 | 0.2
0.1 | 2.4
2.3 | 1.1
1.4 | 0.2 | 4.6
5.2 | NA
NA | (s)
(s)
(s)
0.2 | NA
NA | 13.5
19.2 | 70.6
75.2 | 32.7
45.9 | 103.5
121.1 | | 1980 | 0.1 | 58.5 | 2.1 | 0.1 | 1.0 | 1.5 | 0.0 | 5.2
4.7 | NA | 0.2 | NA | 23.2 | 86.7 | 55.8 | 142.5 | | 1985 | (s)
(s)
0.8
1.7 | 56.5
56.0 | 4.2 | 0.1 | 0.7 | 0.9
0.9 | 0.0
0.2 | 5.9
3.6 | NA
0.0 | 0.3
0.7 | NA | 27.9 | 90.6 | 63.9 | 154.5 | | 1990
1995 | (s)
0.8 | 56.0
53.3 | 1.9
3.3 | (s) | 0.6
0.7 | 0.9 | 0.2
0.1 | 3.6
4.5 | 0.0 | 0.7
0.8 | (s)
0.1
0.1 | 32.6
36.3 | 92.9
95.8 | 81.2
R 88.0 | 174.1
183.8 | | 1995
1996 | 1.7 | 53.3
57.0 | 3.3
3.2 | (s)
(s)
0.2 | 1.0 | 0.5 | (s)
0.0 | 4.5
4.8 | 0.0
0.0 | 0.8
0.8 | 0.1 | 36.3
38.9 | 103.3 | 95.6 | 183.8
198.9 | | 1997 | (s)
(s)
0.1 | 41.6 | 2.8 | 0.2 | 1.2 | 0.5 | 0.0 | 4.6 | 0.0 | 0.8 | 0.2
0.2 | 41.1 | 88.2 | 102.2 | 190.4 | | 1998
1999 | (S) | 41.5
38.8 | 2.6 | (s)
(s) | 1.3 | 0.5
0.3 | 0.5
0.0 | 4.9 | 0.0 | 0.7
0.7 | 0.2 | 42.8
41.8 | 90.1
86.4 | 102.9
101.5 | 192.9 | | 2000 | 0.2 | 40.6 | 2.8
3.3 | (s) | 1.7
1.3 | 0.3 | (s) | 4.8
5.1 | 0.0
0.0 | 0.7 | 0.2
0.2 | 44.9 | 91.8 | 101.5 | 187.9
R 200.6 | | 2001 | (s) | 37.7 | 4.7
3.7 | (s) | 0.9 | 0.4 | (s)
0.1 | 6.1 | 0.0
0.0 | 0.8 | 0.2
0.3 | 45.1 | 89.9 | 107.2 | 197.1 | | 2002
2003 | (s)
(s)
(s)
0.0 | 39.1
38.3 | 3.7
3.8 | (s) | 1.1
1.1 | 0.2
0.6 | 0.1
0.0 | 5.1
5.5 | 0.0
0.0 | 0.8
0.8 | 0.3
0.4 | 47.0
46.9 | 92.3
91.8 | 111.3
111.2 | 203.6
203.0 | | 2003 | (S)
0.0 | 37.3 | 3.6
3.4 | (s) | 1.1 | 0.6 | 0.0 | 5.5
4.9 | 0.0 | 0.8 | 0.4 | 46.9
47.2 | 90.6 | 113.6 | 203.0 | | 2005 | 0.0 | 30.0 | 1.4 | (s)
0.1 | 1.1 | 0.4 | 0.0 | 4.9
3.0 | 0.0 | 0.6 | 0.5 | 49.3 | 83.5 | 117.8 | 201.3 | | 2006
2007 | (s)
0.0 | 28.0 | 1.7
B 1.5 | (s) | 0.5 | 0.7 | 0.0 | 2.9
3.0 | 0.0
0.0 | 0.6 | 0.5 | 50.5 | 82.5 | 119.4
B 125.1 | 201.9 | | 2007 | 0.0 | 31.1
34.7 | R 1.5
R 1.7 | (s)
(s) | 1.0
1.8 | 0.4
0.3 | 0.0
0.0 | R 3.8 | 0.0 | 0.6
0.7 | 0.5
0.6 | 52.8
R 52.9 | 88.0
R 92.7 | H 124 2 | R 213.1
R 216.9 | | 2009
2010 | 0.0 | 33.2
32.4 | 1.8 | (s) | 1.5
1.9 | 0.4 | (s) | 3.7
_ 3.7 | 0.0
0.0 | 0.6 | 0.7 | 51.2
52.7 | 80.4 | R 122.4
125.8 | R 211.8
216.0 | | 2010 | 0.0 | 32.4 | 1.4 | (s) | 1.9 | 0.4 | (s) | 3.7 | 0.0 | 0.6 | 0.8 | 52.7 | H 90.1 | 125.8 | 216.0 | | 2011
2012 | 0.0
0.0 | 32.8
26.0 | 1.6
2.2 | (s)
(s) | 1.2
0.8 | 0.3
0.5 | (s)
0.0 | R 3.1
3.5 | 0.0
0.0 | 0.6
0.5 | 0.4
0.7 | 53.3
52.7 | 90.2
R 83.4 | 126.2
124.6 | 216.4
R 208.0 | | 2012 | 0.0 | 33.6 | 1.9 | (s) | 1.1 | 0.5 | 0.0 | 3.2 | 0.0 | 0.6 | 0.7 | 52.7
52.0 | 90.1 | 120.0 | 210.1 | | | | | • | | | | | | • | | | | | | | a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. b Liquefied petroleum gases, includes ethane and olefins. ^c Beginning in 1993, includes fuel ethanol blended into motor gasoline. d Includes small amounts of petroleum coke not shown separately. e Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. † There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. ⁹ Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. h Distributed solar thermal and photovoltaic energy consumed in the commercial sector is included in residential consumption. From 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. Beginning in 2008, includes small amount of solar and wind energy consumed by commercial plants with capacity of 1 megawatt or greater. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. —— = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The commercial sector includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. • The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT6. Industrial Sector Energy Consumption Estimates, Selected Years, 1960-2013, Kansas | | | | | | Petro | leum | | | | Bio | mass | | | | | | |--------------|------------------------|-----------------------------|------------------------|-----------------|--------------------------------
----------------------|--------------------|------------------|--|----------------------------------|----------------------------------|------------------------------|--------------------------------|------------------------------|----------------------|----------------------| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | LPG b | Motor
Gasoline ^c | Residual
Fuel Oil | Other ^d | Total | Hydro-
electric
Power ^{e,f} | | Losses | | Retail
Electricity
Sales | | Electrical
System | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | Thousan | d Barrels | | | Million
kWh | Wood and
Waste ^{f,g} | and Co-
products ^h | Geo-
thermal ^f | Million
kWh | Net
Energy ^{f,i} | Energy
Losses j | Total ^{f,i} | | 1960 | 175 | 121 | 1,405 | 1,321 | 4,557 | 1,924 | 8,535 | 17,742 | 0 | | | | 2,932 | | | | | 1965 | 148 | 155 | 1.553 | 1.530 | 3,535 | 755 | 9.711 | 17,084 | ŏ | | | | 3.902 | | | | | 1970 | 103 | 184 | 2,515 | 1,985 | 2,777 | 701 | 9,170 | 17,149 | Ö | | | | 4,548 | | | _ | | 1975 | 134 | 152 | 3,532 | 3,125 | 2,406 | 2,178 | 10,702 | 21,943
23,379 | 0 | | | | 6,214 | | | _ | | 1980 | 331 | 191 | 3,476 | 5,844 | 1,198 | 1,004 | 11,857 | 23,379 | 0 | | | | 7,845 | | | | | 1985
1990 | 363
157 | 161 | 4,058 | 22,687 | 1,064
765 | 66 | 6,855 | 34,729 | 0 | | | | 7,167 | | | _ | | 1990 | 138 | 158
175 | 4,545
4,818 | 14,032
3,140 | 995 | 181
18 | 11,399
9.415 | 30,922
18,386 | 0 | | | | 8,087
9.356 | | | | | 1996 | 154 | 158 | 4,825 | 8.100 | | 133 | 9,538 | 23,616 | 0 | | | | 9,231 | | | | | 1997 | 137 | 162 | 5,268 | 11,657 | 1.055 | 168 | 8,050 | 26,197 | ő | | | | 9,365 | | | _ | | 1998 | 109 | 145 | 4,850 | 11,109 | 1,156 | 184 | 7.931 | 25,230 | Ö | | | | 9,762 | | | | | 1999 | 108 | 128 | 4,824 | 17,786 | 725 | 223 | 7,835 | 25,230
31,394 | 0 | | | | 10,215 | | | | | 2000 | 134 | 139 | 4,478 | 14,315 | | 401 | 7,577 | 27,486 | 0 | | | | 10,222 | | | | | 2001 | 165 | 116 | 4,902 | 8,865 | 969 | 317 | 10,358 | 25,411 | 0 | | | | 10,569 | | | | | 2002 | 178 | 138 | 4,470 | 7,962 | 1,017 | 172 | 9,677 | 23,299 | 0 | | | | 10,195 | | | | | 2003 | 158 | 125 | 4,947
5.402 | 14,062 | 1,094 | 624 | 9,324 | 30,051
29,101 | 0 | | | | 10,382 | | | | | 2004
2005 | 203
205 | 116
118 | 5,402
4,936 | 12,142
153 | 1,289
1,195 | 667
333 | 9,601
8,852 | 15,469 | 0 | | | | 10,879
11,165 | | | | | 2005 | 237 | 132 | 5,498 | 66 | 1,195 | 619 | 8,885 | 16,343 | 0 | | | | 11,462 | | | | | 2007 | 241 | 143 | 4,901 | 15,167 | 1,020 | 464 | 8,424 | 29,977 | 0 | | | | 10,885 | | | | | 2008 | 162 | 129 | 5.480 | 11,834 | 800 | 1,220 | 7,561 | 26,895 | 0 | | | | R 10,967 | | | | | 2009 | 105 | 125 | 4,616 | 13,213 | | 444 | 7,844 | 26,932 | ŏ | | | | 10,087 | | | | | 2010 | 111 | 124 | 5,084 | 14,848 | 626 | 361 | 8.457 | 29 376 | 0 | | | | 10.651 | | | | | 2011 | 104 | 128 | 4,556 | 15,347 | _ 627 | 274 | 8,521 | 29,324 | 0 | | | | 10,807 | | | | | 2012 | R 88 | 134 | 4,470 | 15,886 | | 250 | 8,620 | R 29,782 | 0 | | | | 11,041 | | | _ | | 2013 | 85 | 136 | 4,409 | 17,148 | 541 | 176 | 8,134 | 30,407 | 0 | | | | 11,009 | | | | | | | | | | | | | Tri | llion Btu | | | | | | | | | 1960 | 4.0
3.3
2.2 | 125.7 | 8.2 | 5.5 | 23.9 | 12.1 | 52.5 | 102.2 | 0.0 | 0.7 | NA | NA | 10.0 | 242.6 | 24.7 | 267.3 | | 1965 | 3.3 | 154.3 | 9.0 | 6.4 | 18.6 | 4.7 | 60.1 | 98.8 | 0.0 | 1.3 | NA | NA | 13.3 | 271.0 | 31.8 | 302.8 | | 1970 | 2.2 | 184.1 | 14.7 | 7.4 | 14.6 | 4.4 | 56.1 | 97.2 | 0.0 | 2.0 | NA | NA | 15.5 | 301.1 | 37.5 | 338.0 | | 1975 | 2.7
7.1 | 148.8 | 20.6 | 11.4 | 12.6 | 13.7 | 65.5 | 123.8 | 0.0 | 3.9 | NA | NA | 21.2 | 300.4 | 50.9 | 351.3 | | 1980 | 7.1 | 189.7 | 20.2 | 21.2
80.5 | | 6.3 | 72.7
42.7 | 126.8 | 0.0 | 0.0 | NA | NA | 26.8
24.5 | 350.4
347.9 | 64.3
56.0 | 414.°
403.9 | | 1985
1990 | 3.8 | 161.3
157.7 | 23.6
26.5 | 50.0 | 5.6
4.0 | 0.4
1.1 | 70.5 | 152.8
152.2 | 0.0 | 0.0
4.7 | 1.4
1.3 | NA
0.0 | 27.6 | 347.9 | 68.8 | 416. | | 1995 | 3.3 | 176.0 | R 28.0 | 11.2 | | 0.1 | 59.1 | 103.7 | 0.0 | 4.0 | 1.9 | 0.0 | 31.9 | 320.9 | 77.4 | 398. | | 1996 | 3.9 | 157.9 | 28.1 | 28.8 | 5.3 | 0.8 | 59.5 | 122 5 | 0.0 | 3.9 | 0.8 | 0.0 | 31.5 | 320.5 | 77.5 | 398. | | 1997 | 3.4 | 162.8 | 30.7 | 41.5 | | 1.1 | 49.6 | R 128 3 | 0.0 | 3.2 | 1.3 | 0.0 | 32.0 | 330.9 | 79.5 | 410.4 | | 1998 | 2.7
2.7 | 144.0 | 28.2 | 39.5 | 6.0 | 1.2 | 49.4 | H 124 3 | 0.0 | 3.0 | 1.5 | 0.0 | 33.3 | 308.9 | 80.0 | 388 9 | | 1999 | 2.7 | 127.6 | 28.1 | 63.2 | | 1.4 | 48.6 | 145.1 | 0.0 | 3.1 | 1.4 | 0.0 | 34.9 | 314.6 | 84.6 | 399. | | 2000 | 3.2
3.9 | 139.7
116.4 | 26.1
R 28.5 | 50.7 | 3.7 | 2.5 | 47.2 | 130.2
R 131.7 | 0.0 | 2.5
2.9 | 1.6 | 0.0 | 34.9 | 312.1
292.7 | 84.4 | 396. | | 2001 | 3.9 | 116.4 | H 28.5 | 31.4 | 5.1 | 2.0 | 64.8 | H 131.7 | 0.0 | 2.9 | 1.8 | 0.0 | 36.1 | 292.7 | 85.7 | 378. | | 2002 | 4.3
3.8 | 139.0 | 26.0 | 28.2 | | 1.1 | 60.4 | 121.1
R 146.3 | 0.0 | 2.9
2.8 | 3.8 | 0.0 | 34.8 | 305.8 | 82.4 | 388. | | 2003
2004 | 3.8
5.0 | 126.9
117.4 | 28.8
R 31.4 | 50.1
43.2 | 5.7
6.7 | 3.9
4.2 | 57.8
R 60.2 | R 1/56 | 0.0
0.0 | 2.8 | 5.9 | 0.0
0.0 | 35.4
37.1 | R 321.2
R 314.6 | 84.0
89.3 | 405.
R 403. | | 2004
2005 | 5.0 | 117.4 | H 20 7 | 43.2
0.5 | | 2.1 | Κενα | H Q2 / | 0.0 | 2.8
3.0 | 6.6
R 7.7 | 0.0 | 37.1 | R 265.6 | 89.3
91.0 | R 356. | | 2005 | 5.7 | 134.7 | R 31.9 | 0.3 | R 6.6 | 3.9 | R 55 0 | R 97.7 | 0.0 | 0.6 | H 10 0 | 0.0 | 39.1 | 287.8 | 92.5 | 380. | | 2007 | 5.8 | 145.1 | H 28 4 | 53.5 | | 2.9 | H 52 A | 142.0 | 0.0 | 0.6 | R 13 1 | 0.0 | 37 1 | R 343.7 | 88.0 | R 431 | | 2008 | 4.0 | 133.4 | R 31 7 | 41.5 | 5.3
R 4.1 | 7.7 | H 46 5 | 131.5 | 0.0 | 0.6 | H 24 7 | 0.0 | 37.1
R 37.4 | 3316 | R 87.9 | R 419 | | 2009 | 2.5 | 127.3 | R 26.7 | 45.8 | 4.2 | 2.8 | H 48 5 | 127.9 | 0.0 | 0.6 | H 22.6 | 0.0 | 34.4 | R 315.3 | 82.3 | R 397. | | 2010 | 2.7 | 126.4 | R 20 1 | 51.6 | R 3 2 | 2.3 | H 52 2 | R 138.6 | 0.0 | 0.6 | H 24 Q | 0.0 | 36.3 | H 320 5 | 86.8 | H 416 | | 2011 | 2.5 | 131.0 | н 26.3 | 52.8 | n 3.2 | 1.7 | n 52 5 | 136.5 | 0.0 | H 2.7 | R 24.3 | 0.0 | 36.9 | н ззз о | 87.4 | H 421. | | 2012 | 2.0 | R 137.0 | H 25.8 | 55.1 | R 2.8 | 1.6 | R 53.1 | R 138.4 | 0.0 | H 2.4 | H 22.8 | 0.0 | 37.7 | ^H 340.3 | 89.0 | H 429. | | 2013 | 2.0 | 138.5 | 25.5 | 59.8 | 2.7 | 1.1 | 50.0 | 139.1 | 0.0 | 1.8 | 23.8 | 0.0 | 37.6 | 342.9 | 86.7 | 429. | a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. plants with capacity of 1 megawatt or greater. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. Natural yas as it is obtained, includes supportunitial gaseous less to Liquefied petroleum gases, includes ethane and olefins. Beginning in 1993, includes fuel ethanol blended into motor gasoline. d Includes asphalt and road oil, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. [†] There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. ⁹ Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. h Losses and co-products from the production of fuel ethanol. ¹ Distributed solar thermal and photovoltaic energy consumed in the industrial sector is included in residential consumption. From 1981 through 1992, includes fuel ethanol blended into motor gasoline but not shown in the motor gasoline column. Beginning in 2008, includes small amount of solar and wind energy consumed by industrial Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology, kWh = Kilowatthours. —— Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The industrial sector includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. • The continuity of these data sources and estimates may be affected by the obscious data sources and estimation mathodologies. See the Technical series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT7. Transportation Sector Energy Consumption Estimates, Selected Years, 1960-2013, Kansas | | | | | | | P | etroleum | | | | | | | | |--------------|------------------------|-----------------------------|----------------------|------------------------|--------------------------|------------------|--------------|--------------------------------|----------------------|--|--------------------------------|--|---|--| | | Coal | Natural
Gas ^a |
Aviation
Gasoline | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ^c | Lubricants | Motor
Gasoline ^d | Residual
Fuel Oil | Total | Retail
Electricity
Sales | | Electrical | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | | Thou | sand Barrels | | | | Million
Kilowatthours | Net
Energy ^{e,f} | System
Energy
Losses ^g | Total ^{e,f} | | 1960 | 3 | 43 | 170 | 3,056 | 952 | 215 | 507 | 18,976 | 190 | 24,065 | 0 | | | | | 1965 | (s)
(s) | 50
73 | 493 | 3,473 | 1,053
1,561 | 295
348 | 467
448 | 21,786 | 137 | 27,704
33,238 | 0 | | | | | 1970 | | 73 | 326
177 | 4,691 | 1,561
1,310 | 348 | 448 | 25,857 | 8
17 | 33,238 | 0 | | | | | 1975
1980 | (s)
0 | 69
52 | 221 | 5,898
10,397 | 2,466 | 364
110 | 520
603 | 29,331
28,107 | 2 | 37,615
41,906 | 0 | | | | | 1985 | ŏ | 38 | 137 | 9,856 | 4,424 | 95 | 549 | 26,968 | 0 | 42,031 | ő | | | | | 1985
1990 | 0 | 41 | 137
136 | 9,856
11,665 | 4,424
3,701 | 142 | 618 | 26,968
27,700 | Ô | 42,031
43,962
44,217
43,586 | 0 | | | | | 1995 | 0 | 35 | 146 | 12,678 | 2,414 | 56 | 589 | 28,333 | 0 | 44,217 | 0 | | | | | 1996
1997 | 0 | 38
39 | 177
247 | 10,998
10,435 | 2,009
2,131 | 23
97 | 572
604 | 29,807
29,551 | 0 | 43,586
43,066 | 0 | | | | | 1997 | 0 | 33 | 199 | 10,435 | 2,159 | 26 | 633 | 29,551 | 3 | 44,104 | 0 | | | | | 1999 | 0 | 33
32
29 | 240 | 10 054 | 3.476 | 23 | 639 | 30,751
32,764 | 8 | 47.203 | 0 | | | | | 2000 | Ö | 29 | 215 | 9.513 | 3,476
3,234 | 23
30 | 630 | 31.094 | Ö | 47,203
44,715 | Ö | | | | | 2001
2002 | 0 | 26
36 | 196
127 | 9,603
11,097 | 2,259
2,135 | 56
50 | 577 | 29,249
27,511 | 1 | 41,942
41,498 | 0 | | | | | 2002 | 0 | 36 | 127 | 11,097 | 2,135 | 50 | 570 | 27,511 | 7 | 41,498 | 0 | | | | | 2003
2004 | 0 | 33
29 | 102
115 | 11,333
11,059 | 3,228
3,104 | 51
43 | 527
534 | 31,519
30,445 | 8
8 | 46,768
45,308 | 0
0 | | | | | 2004 | 0 | 29 | 214 | 12 827 | 1 758 | 77 | 531 | 26,893 | 0 | 43,306 | 0 | | | | | 2006 | ő | 29
25
25
24 | 218 | 12,827
13,056 | 1,758
1,752 | 40 | 531
517 | 26,893
30,198 | ő | 42,300
45,782 | Ö | | | | | 2007 | 0 | 25 | 165 | 14,127
14,228 | 1,543
1,735 | 41 | 534 | 30,885 | Ö | 47,295
47,056 | Ō | | | | | 2008 | Ō | 24 | 184 | 14,228 | 1,735 | 70 | 496 | 30,343 | 0 | 47,056 | Ō | | | | | 2009 | 0 | 26 | 134 | 14,455 | 2,447 | 69 | 446 | 30,879 | 0 | 48,429
48,543 | 0 | | | | | 2010
2011 | 0 | 24
23 | 175 | 13,717
13,691 | 3,034 | 52
72 | 496
470 | 31,069 | 0 | 48,543 | 0 | | | | | 2012 | 0 | 20 | 153
R 72 | 13,808 | 2,951
2,759 | 73
R 91 | 433 | 29,996
R 30,067 | 0 | 47,335
R 47,229 | 0 | | | | | 2013 | Ö | 23 | 63 | 16,861 | 1,785 | 113 | 458 | 30,099 | 0 | 49,379 | 0 | | | | | | | | | | | | Tril | ion Btu | | | | | | | | 1960 | 0.1 | 44.3 | 0.9 | 17.8
20.2 | 5.1 | 0.8 | 3.1 | 99.7 | 1.2 | 128.5
147.7 | 0.0 | 172.9 | 0.0 | 172.9 | | 1965 | (s) | 49.5 | 2.5 | 20.2 | 5.7 | 1.1 | 2.8
2.7 | 114.4 | 0.9 | 147.7 | 0.0 | 197.1 | 0.0 | 197.1 | | 1970
1975 | (s) | 73.2
68.0 | 1.6
0.9 | 27.3
34.4 | 8.6
7.2 | 1.3
1.4 | 2.7 | 135.8
154.1 | 0.1
0.1 | 177.5
201.2 | 0.0
0.0 | 250.7
269.1 | 0.0
0.0 | 250.7
269.1 | | 1980 | (s)
0.0 | 52.0 | 1.1 | 60.6 | 13.8 | 0.4 | 3.2
3.7 | 147.6 | (s) | 227 2 | 0.0 | 279.2 | 0.0 | 279.2 | | 1985 | 0.0 | 38.1 | 0.7 | 57 4 | 24.8 | 0.4 | 3.3 | 141.7 | (s)
0.0 | 228.3 | 0.0 | 268.2 | 0.0 | 268.2 | | 1990 | 0.0 | 40.6 | 0.7 | 67.9
R 73.8 | 20.7 | 0.5 | 3.7 | 145.5 | 0.0 | 228.3
239.2
239.8 | 0.0 | 280.3 | 0.0 | 268.2
280.3 | | 1995 | 0.0 | 34.7 | 0.7 | H 73.8 | 13.7 | 0.2 | 3.6 | 147.8 | 0.0 | 239.8 | 0.0 | H 274.6 | 0.0 | H 274.6 | | 1996
1997 | 0.0
0.0 | 38.1
39.2 | 0.9
1.2 | R 64.0
R 60.7 | 11.4
12.1 | 0.1
0.4 | 3.5
3.7 | 155.5
R 154.1 | 0.0
0.0 | 235.4
232.2
237.7 | 0.0
0.0 | 273.5
271.4 | 0.0
0.0 | 273.5
271.4 | | 1997 | 0.0 | 39.2
32.7 | 1.0 | R 60.1 | 12.1 | 0.4 | 3.7
3.8 | B 160.4 | | 232.2 | 0.0 | 271. 4
270.4 | 0.0 | 271.4
270.4 | | 1999 | 0.0 | 31.6 | 1.2 | R 58.5 | 19.7 | 0.1 | 3.9 | R 170.8 | (s)
(s) | 254.2 | 0.0 | 285.8 | 0.0 | 285.8 | | 2000 | 0.0 | 29.6 | 1.1 | 55.4 | 18.3 | 0.1 | 3.9
3.8 | R 170.8
R 162.1 | 0.0 | 240.8 | 0.0 | 285.8
R 270.4 | 0.0 | 285.8
R 270.4 | | 2001
2002 | 0.0 | 25.7
36.4 | 1.0 | 55.9 | 12.8
12.1 | 0.2
0.2 | 3.5
3.5 | R 152.5
R 143.4 | (s)
(s) | R 225.9 | 0.0 | 251.6 | 0.0 | 251.6
260.8 | | 2002 | 0.0 | 36.4 | 0.6 | 64.6 | 12.1 | 0.2 | 3.5 | H 143.4 | (s) | 224.4 | 0.0 | 260.8 | 0.0 | 260.8 | | 2003
2004 | 0.0
0.0 | 33.8
29.0 | 0.5
0.6 | R 65.9
R 64.3 | 18.3
17.6 | 0.2
0.2 | 3.2
3.2 | R 164.0
R 158.3 | (s)
(s) | 254.2
240.8
R 225.9
224.4
R 252.2
R 244.3
R 229.0
R 246.8
R 253.9
R 251.8 | 0.0
0.0 | R 286.0
R 273.3 | 0.0
0.0 | R 286.0
R 273.3
R 258.2
R 272.4 | | 2004 | 0.0 | 29.0
29.2 | 1.1 | R 74 6 | 10.0 | 0.2 | 3.2
3.2 | Π 130.3
R 130.2 | 0.0 | R 229 n | 0.0 | R 258 2 | 0.0 | R 258 2 | | 2005 | 0.0 | 25.5 | 1.1 | R 74.6
R 75.8 | 9.9 | 0.3
0.2 | 3.1 | R 139.8
R 156.8 | 0.0 | R 246.8 | 0.0 | R 258.2
R 272.4 | 0.0 | R 272.4 | | 2007 | 0.0 | 25.2 | 0.8 | H 81 7 | 8.7 | 0.2
0.3 | 3.2 | H 159 2 | 0.0 | R 253.9 | 0.0 | R 279.1
R 276.3
R 285.6
R 283.1 | 0.0 | R 279.1
R 276.3 | | 2008 | 0.0 | 24.4 | 0.9 | Hagag | 9.8 | 0.3 | 3.0 | H 155 5 | 0.0 | R 251.8 | 0.0 | R 276.3 | 0.0 | R 276.3 | | 2009 | 0.0 | 27.0 | 0.7 | R 83.6 | 13.9 | 0.3 | 2.7 | R 157.5 | 0.0 | R 258.6
R 258.3 | 0.0 | H 285.6 | 0.0 | R 285.6
R 283.1 | | 2010
2011 | 0.0
0.0 | 24.8
23.7 | 0.9 | R 79.3 | 17.2
16.7 | 0.2
0.3 | 3.0
2.9 | R 157.8 | 0.0
0.0 | n 258.3
B 251.7 | 0.0
0.0 | □ 283.1
B 275.4 | 0.0
0.0 | □ 283.1
B 275.4 | | 2011 | 0.0 | 23.7 | 0.8
R 0.4 | R 79.1
R 79.7 | 15.6 | 0.3 | 2.9 | R 152.0
R 152.2 | 0.0 | R 251.7
R 250.9 | 0.0 | R 275.4
R 271.2 | 0.0 | R 275.4
R 271.2 | | 2013 | 0.0 | 23.9 | 0.4 | 97.4 | 10.1 | 0.4 | 2.8 | 152.4 | 0.0 | 263.4 | 0.0 | 287.3 | 0.0 | 287.3 | | | | | | | | | | | | | | | | | a Transportation use of natural gas is gas consumed in the operation of pipelines, primarily in compressors, and, since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and, since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and, since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and, since 1990, natural gas to gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and, since 1990, natural gas to gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and, since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and, since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and, since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, and since 1990, natural gas consumed as vehicle fuel. Description of pipelines, plintary in compressors, compresso ^c Liquefied petroleum gases, includes ethane and olefins. d Beginning in 1993, motor gasoline includes fuel ethanol blended into the product. ^e There is a discontinuity in this time series between 1980 and 1981 due to the expanded coverage of renewable energy sources beginning in 1981. ^f From 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. ⁹ Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. ⁻⁻⁼ Not applicable. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources. Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT8. Electric Power Sector Consumption Estimates, Selected Years, 1960-2013, Kansas | | | | | Petro | leum | | | | Biomass | | | | | | |--------------|----------------------------|-----------------------------|-------------------------------------|-------------------|-----------------------------------|----------------|------------------------------|-------------------------------------|-----------------------------|-------------------------|-------------------------|-------------------|--|--| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil ^b | Petroleum
Coke | Residual
Fuel Oil ^c | Total | Nuclear
Electric
Power | Hydroelectric
Power ^d | Wood | Geothermal ^f | Solar/PV ^{f,g} | Wind ^f | Net
Electricity
Imports ^h | | | Year | Thousand
Short Tons |
Billion
Cubic Feet | | Thousand | d Barrels | | Million Kil | lowatthours | and
Waste ^{e,f} | | Million Ki | lowatthours | | Total ^{f,i} | | 1960 | 435 | 82 | 110 | 0 | 241 | 351 | 0 | 20 | | 0 | NA | NA | 0 | | | 1965
1970 | 478
344 | 113 | 71
175 | 0 | 156
385 | 226
560 | 0 | 13 | | 0 | NA
NA | NA
NA | 0 | | | 1970 | 344 | 168 | 175 | 0 | 385 | 560 | | 7 | | 0 | NA | NA | 0 | | | 1975
1980 | 2,983
10,034 | 128 | 1,539
382 | 4
0 | 4,134
492 | 5,676 | 0 | 5 | | 0 | NA | NA
NA | 0 | | | 1980 | 14,351 | 101
21 | 195 | 0 | 492
20 | 875
215 | 3,856 | 8
9 | | 0 | NA
0 | (s) | 0 | | | 1990 | 15,018 | 27 | 130 | 0 | 22 | 152 | 7,874 | 13 | | 0 | 0 | (s) | 0 | | | 1995 | 16,345 | 27
28 | 150 | 0 | 1 | 151 | 10,062 | 11 | | 0 | 0 | (s) | 0 | | | 1996 | 16,345
18,852
17,534 | 23 | 176 | ő | 155 | 331 | 8.205 | 11 | | ő | 0 | 0 | Ö | | | 1997 | 17,534 | 23
26 | 163 | Ö | 89 | 331
252 | 8,205
8,430 | 14 | | Ö | Ö | Ö | (s) | | | 1998 | 17,627
18,888 | 37
36 | 294 | 0 | 4 | 298
632 | 10.411 | 11 | | 0 | 0 | 0 | 4 | | | 1999 | 18,888 | 36 | 293 | 0 | 339 | 632 | 9,157 | 12 | | 0 | 0 | 0 | -7 | | | 2000 | 20,699
20,150 | 34 | 269 | 0 | 533 | 803
1,169 | 9,061 | 15
26 | | 0 | 0 | 0 | 0 | | | 2001 | 20,150 | 23 | 193 | 0 | 976 | 1,169 | 10,347 | 26 | | 0 | 0 | 40 | 0 | | | 2002
2003 | 22,660
22,580 | 21 | 121
147 | 0 | 802
1,528 | 923
1,675 | 9,042
8,890 | 13
12 | | 0 | 0 | 467
366 | 0 | | | 2003 | 22,580 | 14
10 | 147
105 | 0 | 1,528 | 1,675
1,615 | 8,890
10 133 | 13 | | 0 | 0 | 359 | | | | 2005 | 22,139
22,046 | 14 | 135 | 0 | 1,722 | 1,857 | 10,133
8,821
9,350 | 11 | | 0 | 0 | 426 | (s)
(s) | | | 2006 | 20,874 | 22 | 122 | 0 | 1,722 | 122 | 9.350 | 10 | | 0 | Ö | 426
992 | (3) | | | 2007 | 22,780 | 22
26 | 94 | 376 | Õ | 470 | 10.369 | 11 | | Õ | Ö | 1.153 | (s) | | | 2008
2009 | 21,616
20,783 | 27
32 | 91 | 258
268 | Ō | 349
353 | 8,497
8,769 | 11 | | Ö | Ō | 1,759
2,863 | (s)
0 | | | 2009 | 20,783 | 32 | 86 | 268 | 0 | 353 | 8,769 | 13 | | 0 | 0 | 2,863 | (s)
0 | | | 2010 | 20,965
20,129 | 28
31 | 98
86 | 199
66 | 0 | 296
152 | 9,556
7,319 | 13
15 | | 0 | 0 | 3,405
3,720 | | | | 2011 | 20,129 | 31 | 86 | 66 | 0 | 152 | 7,319 | 15 | | 0 | 0 | 3,720 | 0 | | | 2012 | 17,759 | 33
23 | 78 | 0 | 0
0 | 78 | 8,285 | 10
15 | | 0 | 0
0 | 5,195
9,433 | 0 | | | 2013 | 18,915 | 23 | 109 | 0 | 0 | 109 | 7,168 | | | 0 | 0 | 9,433 | U | | | | | | | | | | Trillion I | | | | | | | | | 1960 | 10.3
11.6 | 85.1 | 0.6 | 0.0 | 1.5
1.0 | 2.2
1.4 | 0.0 | 0.2 | 0.0 | 0.0 | NA | NA | 0.0 | 97.8 | | 1965 | 11.6 | 112.4 | 0.4 | 0.0 | | | 0.0 | 0.1 | 0.0 | 0.0 | NA | NA | 0.0 | 125.5 | | 1970 | 8.3
59.5 | 167.5 | 1.0
9.0 | 0.0 | 2.4
26.0 | 3.4 | 0.0 | 0.1 | 0.0 | 0.0 | NA
NA | NA | 0.0 | 179.4 | | 1975
1980 | 19.5 | 126.7
97.0 | 9.0
2.2 | (s)
0.0 | 3.1 | 35.0
5.3 | 0.0
0.0 | (s)
0.1 | 0.0
0.0 | 0.0
0.0 | NA
NA | NA
NA | 0.0
0.0 | 221.2
286.7 | | 1985 | 184.3
251.7 | 20.5 | 1.1 | 0.0 | 0.1 | 1.3 | 41.0 | 0.1 | 0.0 | 0.0 | 0.0 | (e) | 0.0 | 314.5 | | 1990 | 267.9 | 27.1 | 0.8 | 0.0 | 0.1 | 0.9 | 83.3 | 0.1 | 0.0 | 0.0 | 0.0 | (s)
(s) | 0.0 | 379.4 | | 1995 | 267.9
285.5
332.5 | 27.6 | 0.9 | 0.0 | (s) | 0.9 | 105.7 | 0.1 | 0.0 | 0.0 | 0.0 | (s) | 0.0 | 419.8 | | 1996 | 332.5 | 22.7
25.5 | 1.0
R _{0.9} | 0.0 | (s)
1.0 | 2.0 | 86.2 | 0.1 | 0.0 | 0.0 | 0.0
0.0
0.0 | (s)
0.0 | 0.0 | 443.5 | | 1997 | 307.5 | 25.5 | R 0.9 | 0.0 | 0.6 | 1.5 | 88.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | (s)
(s)
(s)
0.0 | 423.1 | | 1998
1999 | 306.7
326.5 | 37.1 | 1.7
1.7 | 0.0
0.0 | (s)
2.1 | 1.7
3.8 | 109.2
95.7 | 0.1 | 0.0 | 0.0
0.0 | 0.0
0.0 | 0.0
0.0 | (s) | 454.8
462.4 | | 1999 | 326.5 | 36.3 | 1.7 | 0.0 | 2.1 | 3.8 | 95.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | (s) | 462.4 | | 2000 | 359.3
350.8 | 33.9 | 1.6 | 0.0 | 3.4
6.1 | 4.9
7.3 | 94.5 | 0.2 | 0.0 | 0.0 | 0.0
0.0 | 0.0 | 0.0 | 492.8 | | 2001 | 350.8 | 23.5
21.4 | 1.1
0.7 | 0.0
0.0 | b. I | 7.3
5.7 | 108.1
94.4 | 0.3
0.1 | 0.0
0.0 | 0.0 | 0.0 | 0.4 | 0.0
0.0 | 490.3
513.8 | | 2002
2003 | 387.4
385.6 | 14.5 | 0.7 | 0.0 | 5.0
9.6 | 10.5 | 94.4
92.6 | 0.1 | 0.0 | 0.0
0.0 | 0.0
0.0 | 4.7
3.7 | 0.0 | 507.1 | | 2003 | 380.5 | 10.5 | 0.6 | 0.0 | 9.5 | 10.1 | 105.7 | 0.1 | 0.0 | 0.0 | 0.0 | 3.6 | (s) | 510.5 | | 2005 | 374.8 | 14.2 | 0.8 | 0.0 | 10.8 | 11.6 | 92.1 | 0.1 | 0.0 | 0.0 | 0.0 | 4.3 | (s)
(s)
0.0 | 497 1 | | 2006 | 358.5 | 22.8 | 0.7 | 0.0 | 0.0 | 0.7 | 97.6 | 0.1 | 0.0 | 0.0 | 0.0 | 9.8 | 0.0 | 489.6
R 539.6
R 503.1
R 507.9 | | 2007 | 390.6 | 26.1 | 0.5 | B o o | 0.0 | R 2.7
R 2.0 | 108.8 | 0.1 | 0.0 | 0.0 | 0.0 | 11.4 | (s)
0.0 | R 539.6 | | 2008 | 367.8 | 27.1 | 0.5 | R 1.5 | 0.0 | H 2.0 | 88.8 | 0.1 | 0.0 | 0.0 | 0.0 | 17.3 | Ó.Ó | R 503.1 | | 2009 | 353.6 | 32.5 | 0.5 | H 1 E | 0.0 | R 2.0 | 91.7 | 0.1 | 0.0 | 0.0 | 0.0 | 27.9 | (s)
0.0 | H 507.9 | | 2010 | 357.3 | 28.4 | 0.6 | R 1.1 | 0.0 | R 1.7 | 99.9 | 0.1 | 0.6 | 0.0 | 0.0 | 33.2 | 0.0 | H 521.1 | | 2011 | 344.0 | 31.0 | 0.5 | 0.4 | 0.0 | 0.9 | 76.6 | 0.1 | 0.7 | 0.0 | 0.0 | 36.1 | 0.0 | 489.5
476.2 | | 2012
2013 | 305.6
324.8 | 33.2
23.7 | 0.5
0.6 | 0.0
0.0 | 0.0
0.0 | 0.5
0.6 | 86.8
74.9 | 0.1
0.1 | 0.6
0.9 | 0.0
0.0 | 0.0
0.0 | 49.4
90.0 | 0.0
0.0 | 476.2
515.0 | | 2013 | 324.0 | 23.7 | 0.0 | 0.0 | 0.0 | 0.0 | 74.9 | 0.1 | 0.9 | 0.0 | 0.0 | 90.0 | 0.0 | 313.0 | a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. - = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than +0.5 and greater than -0.5 or Btu value less than +0.05 and greater than -0.05. Notes: Totals may not equal sum of components due to independent rounding. • The electric power sector comprises electricity-only and combined-heat-and-power (CHP) plants within the NAICS 22 category whose primary business is to sell electricity, or electricity and heat, to the public. • Through 1988, data are for electric utilities only. Beginning in 1989, data include independent power producers. • The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. ^b Prior to 1980, based on oil used in internal combustion and gas turbine engine plants. For 1980 through 2000, distillate fuel oil includes fuel oil Nos. 1 and 2, and small amounts of kerosene and jet fuel. ^c Prior to 1980, based on oil used in steam plants. For 1980 through 2000, residual fuel oil includes fuel oil Nos. 4, ^{5,} and 6. ^d Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. Prior to 2001 includes non-biomass waste. e Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. f There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. ⁹ Solar thermal and photovoltaic energy. h Electricity traded with Canada and Mexico. Btu value calculated by converting net imports in kilowatthours by 3,412 Btu per kilowatthour. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both